Abstract:Mixed Reality (MR) could assist users' tasks by continuously integrating virtual content with their view of the physical environment. However, where and how to place these content to best support the users has been a challenging problem due to the dynamic nature of MR experiences. In contrast to prior work that investigates optimization-based methods, we are exploring how reinforcement learning (RL) could assist with continuous 3D content placement that is aware of users' poses and their surrounding environments. Through an initial exploration and preliminary evaluation, our results demonstrate the potential of RL to position content that maximizes the reward for users on the go. We further identify future directions for research that could harness the power of RL for personalized and optimized UI and content placement in MR.
Abstract:Machine learning techniques have seen a tremendous rise in popularity in weather and climate sciences. Data assimilation (DA), which combines observations and numerical models, has great potential to incorporate machine learning and artificial intelligence (ML/AI) techniques. In this paper, we use U-Net, a type of convolutional neutral network (CNN), to predict the localized ensemble covariances for the Ensemble Kalman Filter (EnKF) algorithm. Using a 2-layer quasi-geostrophic model, U-Nets are trained using data from EnKF DA experiments. The trained U-Nets are then used to predict the flow-dependent localized error covariance matrices in U-Net Kalman Filter (UNetKF) experiments, which are compared to traditional 3-dimensional variational (3DVar), ensemble 3DVar (En3DVar) and EnKF methods. The performance of UNetKF can match or exceed that of 3DVar, En3DVar or EnKF. We also demonstrate that trained U-Nets can be transferred to a higher-resolution model for UNetKF implementation, which again performs competitively to 3DVar and EnKF, particularly for small ensemble sizes.
Abstract:Explainable AI (XAI) has established itself as an important component of AI-driven interactive systems. With Augmented Reality (AR) becoming more integrated in daily lives, the role of XAI also becomes essential in AR because end-users will frequently interact with intelligent services. However, it is unclear how to design effective XAI experiences for AR. We propose XAIR, a design framework that addresses "when", "what", and "how" to provide explanations of AI output in AR. The framework was based on a multi-disciplinary literature review of XAI and HCI research, a large-scale survey probing 500+ end-users' preferences for AR-based explanations, and three workshops with 12 experts collecting their insights about XAI design in AR. XAIR's utility and effectiveness was verified via a study with 10 designers and another study with 12 end-users. XAIR can provide guidelines for designers, inspiring them to identify new design opportunities and achieve effective XAI designs in AR.